站长百科知识网

站长百科知识网

最先开设 人工智能 专业的211,实力雄厚,考上就是赚到

style="text-indent:2em;">大家好,今天来为大家解答学人工智能好不好这个问题的一些问题点,包括不建议学人工智能怎么办也一样很多人还不知道,因此呢,今天就来为大家分析分析,现在让我们一起来看看吧!如果解决了您的问题,还望您关注下本站哦,谢谢~

本文目录

  1. 人工智能的利与弊分别是什么,该如何看待
  2. 人工智能教育的优点和缺点
  3. 学人工智能好不好
  4. 都说人工智能好,但凡事都有利弊,人工智能的弊端是什么

人工智能的利与弊分别是什么,该如何看待

随着社会与科技的快速发展,人工智能也进入了高速发展的轨道。人工智能确确实实地给我们生活带来了很多的便利。不仅仅是从我们日常的衣食住行上有着很好的体现,而且在我们日常的安全防范领域、娱乐领域、甚至是科学研究领域,都在慢慢地和我们接轨。就在人工智能高速发展的同时,人类也开始担忧,在未来,人工智能倘若按这个进度发展下去。它会不会完全取代人类。在当下的网络中,太多的人在吹捧人工智能。那么,人工智能到底是好还是坏?而人工智能这把双刃剑的利与弊是什么?

人工智能给人类带来的利端:

1、带来更高的的商业价值

人工智能在数据集上有着一定的优势。目前的观察来说,人工智能有三大商业方向。一个是大数据的统计,第二个是对用户情绪的一个评估。第三个则是与用户之间的社交纽带。人工智能通过这三大商业方向,可以更好地了解人类。同时也可以创作出更好的软件,以此来给更多的人带来快乐。而在未来,可以增加客户体验,给客户带来快乐的企业,将会赚取更多的商业价值。

2、带来更多的就业机会

就好像人类从工农业时代进化成为现代化工业的时代一样,现代化工业时代已经给更多的人带来了新的就业机会。就好比互联网行业,解决了上千万人的就业问题。虽然很多人会认为,随着人工智能的发展,无人汽车开始慢慢普及。更加多的智能工作流程技术也在快速发展,那么会不会在此前提下大部分的工作都会被人工智能所取代。殊不知,人工智能虽然在取代大部分工作,但是同时也创造了更多的工作环境和更多的工作机遇,就好像目前大部分从事人工智能领域的人士,年薪百万也不在少数。

3、给人类带来更加美好的生活

自从有了人工智能后,各个行业,各个领域的工作效率有着很显著的提高。人类的整体财富也在指数型的增长。在此为前提下,人工智能不仅给人类的生活打下了坚实的物质基础,更是把更多的人从简单烦躁而重复的工作中,解放出来。让我们更加自由地去做更多的事情。不仅如此,人工智能在医疗上也起到很大的帮助。很多医生都不能确定的病情,人工智能可以通过它的大数据进行分析和理疗。再好比当下的人工智能无人汽车。在技术保障的前提下,这不仅大大降低了事故发生率,还节省了驾驶人员大量的驾驶时间。

人工智能给人类带来的弊端:

1、人才分化,贫富差距弊端

人工智能带来的人才分化极端。将会引起未来的人才争夺战。而社会上更多一流的人才将会偏向一边,相对资金比较薄弱的企业或者个人,将会遭受到大规模的失业。在这种情况下会导致企业巨头的垄断,以及贫富差距的分化将会非常严重。

2、带来更加频繁的战争

人工智能机器人的产生,还有一个最可怕的弊端,当人工智能被大量用武器中,未来的战争将不会大量使用到人类,而当战争不再使用到真人,从道德的角度去考虑,人工智能的战争不会受到太多的批评,随之而带来的,将会是更多的机器兵团战争。

3、带来潜在的危险性

早在2015年,德国大众的一家汽车制造工厂,一个机器人误杀一名外包公认。而作为人工智能发展大国——日本,至今为止,已经有20人死于机器人误杀事件,而有高达8000的人数被机器人致残,而如果一旦人工智能机器人落到恐怖分子的手里,那后果将会更加不堪设想。

在我们生活中,几乎所有的东西都有利弊,人工智能也一样是一把双刃剑,对待人工智能未来的发展,我们不仅要以乐观的态度面对,而且我们还要对这个时代有信心,对人工智能相关研发人员有信心,因为俗话说得好,邪不压正!

人工智能教育的优点和缺点

随着科技的发展,我们会发现以前只能够在电影中见到的东西,可能要在这个时代呈现在大家的面前了,比如说AI。那么今天就来和大家说说人工智能对于教育的利弊?

人工智能对教育的利弊:

好处:为教师节约大量的时间,将会以新的面貌呈现在大家面前,教育成本更低。

坏处:需要家长承担更多的责任、教育好孩子。会让两极分化更加的明显,让孩子的人际交往能力变差。

学人工智能好不好

有关机器学习领域的最佳介绍,请观看Coursera的AndrewNg机器学习课程。它解释了基本概念,并让你很好地理解最重要的算法。

有关ML算法的简要概述,查看这个TutsPlus课程“MachineLearningDistilled”。“ProgrammingCollectiveIntelligence”这本书是一个很好的资源,可以学习ML算法在Python中的实际实现。它需要你通过许多实践项目,涵盖所有必要的基础。

这些不错的资源你可能也感兴趣:

PererNorvig的UdacityCourseonML(MLUdacity课程)TomMitchell在卡梅隆大学教授的AnothercourseonML(另一门ML课程)YouTube上的机器学习教程mathematicalmonk

二、深度学习

关于深度学习的最佳介绍,我遇到最好的是DeepLearningWithPython。它不会深入到困难的数学,也没有一个超长列表的先决条件,而是描述了一个简单的方法开始DL,解释如何快速开始构建并学习实践上的一切。它解释了最先进的工具(Keras,TensorFlow),并带你通过几个实际项目,解释如何在所有最好的DL应用程序中实现最先进的结果。

在Google上也有一个greatintroductoryDLcourse,还有SephenWelch的greatexplanationofneuralnetworks。

之后,为了更深入地了解,这里还有一些有趣的资源:

GeoffreyHinton的coursera课程“NeuralNetworksforMachineLearning”。这门课程会带你了解ANN的经典问题——MNIST字符识别的过程,并将深入解释一切。MITDeepLearning(深度学习)一书。UFLDLtutorialbyStanford(斯坦福的UFLDL教程)deeplearning.net教程MichaelNielsen的NeuralNetworksandDeepLearning(神经网络和深度学习)一书SimonO.Haykin的NeuralNetworksandLearningMachines(神经网络和机器学习)一书

三、人工智能

“ArtificialIntelligence:AModernApproach(AIMA)”(人工智能:现代方法)是关于“守旧派”AI最好的一本书籍。这本书总体概述了人工智能领域,并解释了你需要了解的所有基本概念。

来自加州大学伯克利分校的ArtificialIntelligencecourse(人工智能课程)是一系列优秀的视频讲座,通过一种非常有趣的实践项目(训练AI玩Pacman游戏)来解释基本知识。我推荐在视频的同时可以一起阅读AIMA,因为它是基于这本书,并从不同的角度解释了很多类似的概念,使他们更容易理解。它的讲解相对较深,对初学者来说是非常不错的资源。

大脑如何工作

如果你对人工智能感兴趣,你可能很想知道人的大脑是怎么工作的,下面的几本书会通过直观有趣的方式来解释最好的现代理论。

JeffHawkins的OnIntelligence(有声读物)G?del,Escher,Bach

我建议通过这两本书入门,它们能很好地向你解释大脑工作的一般理论。

其他资源:

RayKurzweil的HowtoCreateaMind(如何创建一个头脑RayKurzweil)(有声读物).PrinciplesofNeuralScience(神经科学原理)是我能找到的最好的书,深入NS。它谈论的是核心科学,神经解剖等。非常有趣,但也很长–我还在读它。

四、数学

以下是你开始学习AI需要了解的非常基本的数学概念:

微积分学

KhanAcademyCalculusvideos(可汗学院微积分视频)MITlecturesonMultivariableCalculus(MIT关于多变量微积分的讲座)

线性代数

KhanAcademyLinearAlgebravideos(可汗学院线性代数视频)MITlinearalgebravideosbyGilbertStrang(GilbertStrang的MIT线性代数视频)CodingtheMatrix?(编码矩阵)–布朗大学线程代数CS课程

概率和统计

可汗学院Probability(概率)与Statistics(统计)视频edxprobabilitycourse(edx概率课程)

五、计算机科学

要掌握AI,你要熟悉计算机科学和编程。

如果你刚刚开始,我建议阅读DiveIntoPython3(深入Python3)这本书,你在Python编程中所需要的大部分知识都会提到。

要更深入地了解计算机编程的本质–看这个经典的MITcourse(MIT课程)。这是一门关于lisp和计算机科学的基础的课程,基于CS-结构和计算机程序的解释中最有影响力的书之一。

六、其他资源

Metacademy?–是你知识的“包管理器”。你可以使用这个伟大的工具来了解你需要学习不同的ML主题的所有先决条件。kaggle?–机器学习平台

都说人工智能好,但凡事都有利弊,人工智能的弊端是什么

人工智能的弊端就是需要大量的数据做支撑,收集“足够的多的事情”绝不是一件简单的事情,这可能会是一个漫长的过程。另外,对于人工智能对于很多从事重复性工作的人来讲,可能也不是什么美好的事,它太“聪明”了,以至于可以完完全全地取代你。

AI时刻对话人工智能行业先锋

如果你还想了解更多这方面的信息,记得收藏关注本站。

初中毕业学人工智能与网络安全技术好不好

标签:# 人工智能# 我的# 好不好# 网站